

Scanning Probe Microscope

Bruker Dimension Icon

\mathbf{i} PRINCIPLE

First scanning probe microscope was invented in 1981. Its inventors (G. Binnig and H. Röhrer) have been awarded by the Nobel price in 1986. This microscope uses interaction between the sharp tip and sample surface to measure topography. If the tip is sharp enough - idealy one atom at the very end - it is able to distinguish each atoms on measured surface.

• similar principle like turntable

- · able to reach atomic resolution
- tip has to measure in all desired points separetly - scanning
- · feedback keeps cantilever deflection (force) constant
- measured force combine attractive van der Waals forces and repulsive quantum-mechanical interactions

RESULTS

MFM of FeRh squares [1]

DVD record

SPECIFICATION

Sc

anner range	90 μm (lat.) x 10 μm (vert.)
anner noise	< 0.15 μm (lateral) < 35 pm (vertical)
mple size	Ø 210 mm × 15 mm (vert.)
chniques	ScanAsyst Mode
	Non-contact Mode
	Contact Mode
	Tapping Mode
	Phase Imaging
	Force Spectroscopy
	Force Modulation
	PeakForce TUNA, QNM
	Lateral Force Microscopy
	Electric Field Microscopy
	Scanning Tunneling Microscopy
	Kelvin Probe Force Microscopy
	Magnetic Force Microscopy

PUBLICATIONS >

[1] Schánilec, V.; Horký, M. and col. Magnetic phase transition asymetry dependent on the spatial confinement of FeRh patterns

> MORE INFO

Guarantor: Guarantor: Saeed Mirzaei (saeed.mirzaei@ceitec.vutbr.cz)

Web: http://nano.ceitec.cz/scanning-probe-microscope-bruker-dimension-icon-icon-spm/

